Aruslistrik dapat dibedakan menjadi dua dilihat dari arah alirannya, yaitu: Arus Searah (Direct Current atau DC), pada jenis arus searah ini arus listrik mengalir dari titik berpotensial tinggi menuju titik berpotensial rendah. Arus Bolak Balik (Alternating Current atau AC). Jenis arus ini mengalir secara berubah ubah mengikuti garis garis waktu.
Energi adalah bagian utama untuk semua kegiatan makhluk hidup, termasuk manusia dalam memenuhi kebutuhan hidupnya selalu memerlukan energi. Energi dapat didefinisikan sebagai kemampuan untuk melakukan kerja oleh karena itu sifat dan bentuk energi dapat berbeda sesuai dengan fungsinya, antara lain energi kinetic, potensial, termal, kimia, nuklir, listrik dan energi elektromagnetik. Pada prinsipnya bentuk atau sifat energi tersebut dapat saling dikonversikan secara langsung ataupun tidak langsung. Panas pada benda energi kalor dapat sebagai akibat dari gesekan oleh gerakan benda energi kinetik atau sebagai akibat adanya listrik yg dialirkan energi listrik adalah merupakan proses konversi energi langsung, sedangkan energi listrik pada generator dynamo atau alternator asalnya adalah energi dari minyak, batubara yg dibakar energi termis dirubah menjadi energi kinetik pada motor bakar atau turbin rotasi, energi kinetik, berikutnya oleh dynamo atau generator diubah menjadi energi listrik, merupakan proses yg tdk langsung. Untuk kebutuhan manusia konsumsi energi dapat dibedakan atas beberapa kelompok sector, yaitu kelompok pembangkit listrik, pemakaian industri, transportasi, komersial dan rumah tangga. Sumber sumber energi yang terutama adalah air, angina, batubara, minyak bumi, gas alam, matahari, uranium, biomassa dan biogas. Energi listrik mempunyai beberapa kelebihan dibanding energi yang lain diantaranya adalah Lebih mudah disalurkan Lebih mudah didistribusikan ke daerah yang lebih luas Lebih mudah diubah kedalam bentuk energi lain, misalnya menjadi energi panas, cahaya atau tenaga mekanik I. Penggunaan Listrik 1. Penggunaan listrik untuk menghasilkan cahaya Jika sepotong kawat logam dipanaskan oleh sebuah lampu Bunsen atau lampu tempel, dalam waktu yang sangat singkat kawat tadi akan bersinar dengan cahaya merah. Kawat logam seperti ini disebut “memijar” Jika proses pemanasan ini dilanjutkan maka cahaya merah tadi akan menjadi memutih. Untuk tercapainya proses ini diperlukan sejumlah panas yang cukup besar. Proses ini merupakan salah satu konsep dasar pemikiran untuk pembuatan sebuah “lampu pijar listrik”. Sebagaimana kita ketahui jika arus mengalir sepanjang kawat yang memiliki hambatan, maka arus ini akan menimbulkan energi panas. Dengan perhitungan yang teliti terhadap kawat luas penampang dan banyaknya jumlah muatan listrik maka proses memijar ini akan tercapai, maka cahaya putih tadi diubah ke dalam bentuk energi lain yaitu yang biasa disebut Cahaya. Bagian yang terpenting dari lampu pijar ini adalah kaca penutup dan kumparan kecil yang terbuat dari kawat wolfram dimana arus listrik dialirkan. Kumparan ini dinamakan FILAMEN. Kadang-kadang filament tersebut dibuat dari sebuah kawat yang berdiameter sangat kecil dan kemudian ditunjang oleh kawat-kawat yang lebih tebal. 2. Penggunaan listrik untuk menghasilkan panas. Peralatan listrik yang banyak terdapat di rumah-rumah tangga sebagian dari peralatan ini dapat menghasilkan panas; sewaktu listrik mengalir melalui kawat kecil nekelin maka kawat tadi akan menjadi panas. Sebagai contoh peralatan tersebut adalah kompor listrik untuk memasak, ketel listrik untuk mendidihkan air, dll. 3. Penggunaan listrik untuk menghasilkan bunyi Radio dan pesawat telepon, merupakan contoh alat yang mengalami proses perubahan dari listrik ke dalam bentuk bunyi. Pesawat penerima ini tergantung dari gelombang listrik yang merambat melalui media udara dan sebuah stasiun pemancar lihat gambar dibawah Pesawat telepon tidaklah begitu rumit seperti arus listrik yang dialirkan melalui sepanjang kawat dari satu alat kealat yang lain. Cara yang berlawanan dari pembicaraan akhir dari sebuah telepon mengubah suara ke bentuk listrik. Ini yang biasa kita kenal dengan nama mikropon. Alat ini juga digunakan dalam stasiun-stasiun pemancar untuk mengubah pembicaraan atau musik ke dalam bentuk gelombang listrik yang kemudian dapat disiarkan. 4. Penggunaan listrik untuk menghasilkan gesekan Energi listrik kadang-kadang untuk menggerakkan mesin atau memutarkan mesin-mesin yang terdapat di dalam bengkel-bengkel industri dan mereka ini semua tergantung kepada motor-motor listrik. Dalam penggunaan yang lain, banyak rumah tangga yang menggunakan motor listrik, sebagai contoh Kipas angin listrik; dimana motor listrik menggerakkan baling-baling atau fan-bladenya Jam listrik, dimana motor listrik menggerakkan jarum-jarum jam Gramaphone, dimana motor listrik menggerakkan putaran piringannya. Standar & Konvensi dalam Teknik Listrik Sistem satuan atau dimensi international, yg lazim disebut SI, digunakan dalam teknik listrik. Tabel menunjukkan satuan-satuan SI dasar dan Tabel menunjukkan satuan SI pelengkap. Satuan satuan lazim lainnya dapat dijabarkan dari satuan-satuan dasar & pelengkap tersebut. Mis., coulomb dijabarkan dari detik dan ampere. Tabel menunjukkan satuan-satuan jabaran yg lazim dijumpai dalam analisa listrik. Simbol Rangkaian Standar II. Kuat Arus Listrik Arus listrik adalah aliran muatan listrik pada suatu penghantar jika pada ujung-ujung penghantar itu terdapat beda potensial. Semakin banyak muatan listrik yang mengalir, arus listriknya semakin besar. Banyaknya muatan listrik yang mengalir pada suatu penghantar tiap satuan waktu disebut kuat arus listrik. Dari pengertian tersebut, maka kuat arus listrik dapat dihitung dengan rumus Satuan kuat arus listri adalah ampere A. Kelipatan satuan kuat arus yang lain Contoh Soal Muatan listrik 240 C mengalir pada suatu penghantar selama 2 menit. Berapakah kuat arus listrik yang mengalir pada penghantar itu ? Jadi kuat arus listrik yang mengalir pada penghantar itu adalah 2 A. III. Muatan Listrik Tahanan dan Daya Hantar Tahanan ialah gesekan atau rintangan yang diberikan suatu bahan terhadap suatu aliran arus. Dengan adanya gesekan atau rintangan ini, menyebabkan gerak elektron berkurang. Hambatan-hambatan ini yang menghalangi gerak elektron disebut resistansi. *Jadi resistansi adalah hambatan listrik, makin besar resistansi sebuah penghantar, semakin kecil arus listrik yang mengalirnya. Besar daya kemampuan pengantar arus ini disebut daya hantar arus. Akibat adanya gesekan atau rintangan pd aliran elektron, maka sejumlah energi listrik berubah menjadi energi panas. Definisi 1 satu ohm ialah tahanan satu kolom air raksa yang panjangnya 1,063 m dengan penampang 1 mm² pada suhu 0ºC. Resistor dapat pula berupa lampu atau elemen pemanas. Kawat dalam ukuran panjangpun dapat memberikan hambatan tertentu. Mis. lampu pijar, radio, motor listrik, kumparan kawat. Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus; R = 1/G dan G = 1/R ; R = tahanan kawat listrik dlm satuan ohm ; G = daya hantar arus dlm Ʊ satuan mho atau siemens. Tahanan jenis suatu bahan ialah tahanan bahan itu yang panjangnya 1 meter dengan luas penampang 1 mm² . Tahanan jenis diberi simbol ρ rho. Daya hantar jenis adalah kebalikan dari tahanan jenisnya dan diberi simbol g Menghitung besarnya tahanan R Tahanan penghantar itu berbanding terbalik dengan luas penampangnya q1, R1 dan I1 adalah penampang, tahanan dan pjg kawat penghantar I. q2, R2 dan I2 adalah penampang, tahanan dan panjang kawat penghantar II. Jika penampang penghantar 2x lebih besar, maka tahanannya 2x lebih kecil. Jika panjang penghantar itu 2x lebih panjang, maka tahanan itu 2x lebih besar. ρ = Tahanan jenis dalam satuan mm2/m g = Daya hantar jenis dalam satuan m/ mm2 IV Hukum Ohm
2010.2017 Fisika Sekolah Menengah Atas terjawab Jelaskan bagaimana daya listrik dalam kawat hambatan berubah menjadi panas 1 Lihat jawaban Iklan Jawaban 3.0 /5 2 handinakulsum2 arus listrik yang mengalir dalam kawat akan meningkatkan tumbuhan tumbuhan partikel partikel atom dalam kawat. semoga membantu Iklan Ada pertanyaan lain?
Artikel ini membahas tentang konversi energi listrik menjadi energi panas yang menggambarkan bagaimana elektron dibebankan untuk kehilangan energinya. Ketika elektron bergerak memiliki energi listrik berinteraksi dengan elektron stasioner, energi mereka diubah menjadi energi kimia atau energi cahaya. Tetapi jika energinya lebih besar dari kapasitas elektron stasioner, kelebihan energi listrik dilepaskan dalam bentuk energi panas. Energi listrik diubah menjadi energi kimia ketika elektron stasioner menyerap energi kinetik. Ini adalah proses dari konversi energi kinetik menjadi energi potensial. Jika lebih banyak elektron dengan energi kinetik berinteraksi dengan elektron stasioner yang terikat secara kimia dengan energi potensial yang tersimpan, konversi energi akan dibalik. Saat menyalakan bohlam listrik yang terpasang pada baterai, elektron stasioner di dalam baterai memisahkan ikatan kimianya. Mereka menjadi bebas untuk dibawa-bawa energi potensial as energi kinetik dalam bentuk energi listrik melalui kawat penghantar. Ketika elektron tersebut menghubungi bahan tungsten bohlam, mereka berinteraksi untuk menghasilkan bentuk energi lain. Energi Listrik menjadi Energi PanasBagaimana cara menghasilkan Energi Panas?kredit ShutterstockEnergi listrik eksternal dari baterai memutuskan ikatan kimia elektron di dalam bola lampu sehingga mereka mulai bergerak cepat dengan menyerap energi kinetik eksternal. Suhu adalah kuantitas fisik yang menjelaskan kepada kita tentang seberapa cepat elektron bergerak. Oleh karena itu, gerakan cepat elektron memancar energi panas dari energi listrik. Itulah alasannya ketika energi listrik eksternal mengalir melalui konduktor pembawa arus, kita merasakan panas di permukaannya ketika kita menyentuhnya. Tergantung pada energi listrik eksternal, elektron menahan lebih cepat gerakan. Semakin cepat elektron bergerak, semakin panas permukaannya. Benda yang bersuhu lebih tinggi akan menghantarkan panasnya ke benda lain yang bersuhu lebih rendah. Oleh karena itu, elektron yang bergerak cepat melepaskan energi berlebih dalam bentuk energi cahaya. Ketika kita menambahkan energi cahaya dan energi panas bola, kita menemukan bahwa jumlah mereka sama dengan energi listrik, sesuai dengan hukum konversi tentang Contoh Energi Listrik ke Energi energi listrik menjadi energi panas adalah pemanasan listrik adalah proses menghasilkan energi panas dari unsur-unsur kimia pada energi listrik eksternal yang lewat. Perangkat listrik berisi resistor sebagai elemen pemanas yang berfungsi berdasarkan prinsip pemanasan Joule untuk menghasilkan energi panas, yang kemudian digunakan dengan susah payah untuk tujuan komersial. Apa Proses Energi Listrik menjadi Energi Panas?Pemanas air instan yang dipasang di kamar mandi didasarkan pada konversi energi listrik menjadi energi panas. Setiap kali kita menyalakan pemanas, kita mendapatkan aliran air panas. Tapi pernahkah Anda bertanya-tanya mengapa butuh beberapa waktu agar air menjadi panas? Pemanas air beroperasi pada Pemanasan joule or Pemanasan resistif, di mana panas dibuat dengan melewatkan arus listrik melalui konduktor. Pemanas listrik melibatkan interaksi elektron yang bergerak sebagai pembawa muatan dengan elemen pemanas di dalam konduktor. itu Medan listrik dikembangkan pada konduktor karena perbedaan potensial mempercepat elektron stasioner. Jadi elektron mentransmisikan dengan energi kinetik menuju arah medan listrik ke konduktor. Di sebagian besar pemanas listrik, a hambat digunakan sebagai elemen pemanas. Ini adalah dua komponen terminal pasif yang mengatur aliran energi listrik di dalam kinetik kemudian ditransmisikan ke elektron tetap ketika elektron yang bergerak mengenai elemen resistor. Elektron di dalam resistor tereksitasi untuk bergerak cepat karena menyerap energi kinetik. Yaitu ketika resistor menghilangkan kelebihan energi elektronnya sebagai energi panas menggunakan prinsip pemanasan Joule. Pekerjaan yang dilakukan W dari elektron yang bergerak ke dalam konduktor diberikan oleh W = mana, V adalah tegangan dan I adalah arus yang melewati panas yang hilang oleh resistor konduktor disebut sebagai Kekuatan pemanasan P. P = W/t = VISesuai Hukum Ohm, V = IR,Oleh karena itu, P = I2R, yang analog dengan hukum pertama Joule. Oleh karena itu, prinsip pemanasan Joule diturunkan dari hukum pertama Joule, yang menyatakan bahwa"Daya pemanasan P suatu penghantar listrik sebanding dengan perkalian kuadrat arus listrik yang mengalir I dan hambatannya R”.. Baca tentang Konversi Energi Mekanik ke Energi KinetikBagaimana Mengubah Energi Listrik Menjadi Energi Panas?Energi listrik diubah menjadi energi panas karena adanya sejumlah arus listrik mengalir melalui bahan konduktor, itu menjadi panas. Setiap konduktor memiliki resistansi bawaan yang menyebarkan energi panas ketika memperoleh energi listrik. Fenomena ini mencegah konduktor dari hubungan arus pendek selama energi listrik tinggi. Setiap konduktor mengandung beberapa Perlawanan untuk menjaga aliran arus. Kita juga dapat mengatur aliran arus dengan menambahkan resistor eksternal ke konduktor. Nilai energi panas yang diinginkan dapat diperoleh dari konduktor menggunakan Pemanasan Panas dengan mengubah Perlawanan kredit ShutterstockKetika arus melewati setiap konduktor, permukaannya menjadi lebih panas. Hambatan konduktor mempertahankan energi listrik dengan menyerap dan kemudian memancarkan jumlah energi yang tepat sebagai energi panas. Jika tidak, kita melihat hubungan arus pendek ketika sejumlah besar arus melewati konduktor bebas hambatan. Baca lebih lanjut tentang Muatan ElektrostatikDayaListrik : Pengertian, Jenis, Rumus, Konversi dan Perhitungan. Daya Listrik - Coba perhatikan betul setiap alat listrik di sekitar Anda saat ini. Jika diamati, ternyata setiap alat tersebut sudah tercantum informasi mengenai spesifikasi daya. Misalnya setrika memiliki daya 220 volt, magic com dengan daya 350 watt dan lain sebagainya.ilustrasi perubahan energi listri menjadi energi panas, sumber gambar makhluk hidup pasti membutuhkan energi untuk keberlangsungan hidupnya, termasuk manusia. Salah satu energi yang paling penting yaitu energi listrik. Perubahan energi listri menjadi energi panas merupakan jenis perubahan energi yang sangat membantu manusia untuk memenuhi kebutuhan buku Energi dan Aplikasinya dalam Kehidupan Sehari-hari oleh Zuhaida M. 2009, energi listrik merupakan energi yang dapat terselenggara karena adanya muatan-muatan aliran listrik yang bergerak atau berpindah. Adapun muatan listrik tersebut akan menimbulkan arus Perubahan Energi Listrik Menjadi Energi Panasilustrasi perubahan energi listri menjadi energi panas, sumber gambar buku Energi Terbarukan oleh Hamdi 2016 dijelaskan bahwa energi listrik banyak dimanfaatkan di dalam kehidupan sehari-hari, contohnya untuk menghasilkan energi panas. Beberapa contoh perubahan energi listrik menjadi energi panas yaitu sebagai berikutKompor listrik berbeda dengan karakteristik kompor gas karena kompor ini dapat dioperasikan dengan cara menyambungkannya ke aliran listrik. Kompor jenis ini memanfaatkan energi elektromagnetik agar dapat menghasilkan energi panas, sehingga dapat digunakan untuk yang disambungkan ke listrik akan memperoleh arus listrik, sehingga dapat menghasilkan energi panas. Energi panas yang dihasilkan oleh setrika dapat dimanfaatkan untuk menghaluskan baju yang perubahan energi listrik menjadi energi panas yang berikutnya adalah penanak nasi. Penanak nasi yang tersambung dengan listrik akan membuat beras menjadi matang, sehingga dapat berubah menjadi nasi yang dapat adalah salah satu alat rumah tangga yang mampu menghasilkan perubahan energi, dari energi listrik menjadi energi panas. Umumnya, oven digunakan untuk membuat kue atau memasak makanan lainnya. alat ini memiliki ruang tertutup yang mampu menghasilkan panas, sehingga dapat membuat bahan makanan menjadi merupakan salah satu alat yang umumnya digunakan untuk memperbaiki berbagai perkakas. Solder termasuk alat yang berasal dari energi listrik yang dapat berubah menjadi energi panas. Perubahan energi tersebut dapat dimanfaatkan untuk menyambungkan serangkaian komponen peralatan perubahan energi listrik menjadi energi panas sangatlah banyak di dalam kehidupan ini. Namun, alangkah lebih bijak jika kita dapat memanfaatkan energi listrik dengan bijak dan tidak konsumtif untuk meminimalisir terjadinya kelangkaan suatu hari nanti.
Jelaskanbagaimana terjadinya masing-masing muatan tersebut. 3. Adalah lebih mudah bagi elektron untuk pindah melalui udara lembab daripada udara kering. Oleh karena alasan tersebut, kawat listrik yang pada umumnya terbuat dari tembaga merupakan konduktor yang baik. Perak juga menghantarkan listrik amat baik, namun perak jauh lebih mahal
Hambatan jenis resistivitas adalah hambatan resistansi suatu penghantar yang memiliki panjang satu satuan panjang dan luas satu satuan luas. Apa kabar adik-adik? Semoga kalian selalu dalam keadaan sehat. Materi fisika kita kali ini akan membahas tentang hambatan jenis atau resistivitas suatu penghantar. Sebelumnya, kita telah menuntaskan materi yang berkaitan dengan penghantar, yaitu materi konduktor dan isolator. Kalian bisa membacanya di sini Konduktor Isolator Sebagaimana yang pernah dijelaskan, penghantar merupakan komponen penting dalam bidang kelistrikan, khususnya rangkaian. Penghantar menjadi penghubung antara komponen-komponen listrik dengan sumber arus listrik dalam suatu rangkaian. Penghantar memiliki beberapa karakteristik utama, salah satunya adalah hambatan jenis atau resistivitas. Karakteristik inilah yang akan kita uraikan lebih lanjut dalam materi ini. Baiklah, kita mulai saja pembahasannya... Daftar Isi 1Pengertian Hambatan Jenis Resistivitas 2Simbol dan Satuan Hambatan Jenis Resistivitas 3Rumus Hambatan Jenis Resistivitas Hambatan Jenis dengan Medan Listrik Hambatan Jenis dengan Hambatan Hambatan Jenis dengan Suhu 4Faktor yang Mempengaruhi Hambatan Jenis Resistivitas 5Contoh Soal Hambatan Jenis 6Kesimpulan Pengertian Hambatan Jenis Resistivitas Apa yang dimaksud dengan hambatan jenis? Dalam ilmu kelistrikan, hambatan jenis resistivitas adalah hambatan yang dimiliki oleh penghantar dengan luas penampang satu satuan luas tiap satu satuan panjang. Hambatan jenis resistivitas bisa menjadi ukuran kemampuan suatu penghantar dalam mengalirkan arus. Semakin besar hambatan jenis, semakin kecil arus listrik yang mengaliri penghantar. Sebaliknya, semakin kecil hambatan jenis resistivitas, maka semakin besar arus listrik yang bisa dialirkan oleh suatu penghantar. Logam dan campuran logam merupakan penghantar yang memiliki nilai hambatan jenis paling kecil. Bahan ini dinamakan konduktor. Contohnya, besi, baja, tembaga, emas, dan perak. Sebuah penghantar sempurna akan memiliki hambatan jenis resistivitas nol, dinamakan superkonduktor. Sedangkan, bahan-bahan yang memiliki hambatan jenis besar sehingga arus listrik tidak dapat atau sulit mengalir, disebut isolator. Contohnya, kaca, karet, kayu, dan plastik. Sementara itu, terdapat juga bahan dengan hambatan jenis yang nilainya berada di antara konduktor dan isolator, disebut semikonduktor. Contohnya, karbon, germanium, dan silikon. Simbol dan Satuan Hambatan Jenis Resistivitas Dalam fisika, hambatan jenis resistivitas disimbolkan dengan huruf yunani ρ, dibaca "rho", dengan satuan menurut Sistem Satuan Internasional SI adalah m, dibaca "ohm meter". Berdasarkan jenis besarannya, hambatan jenis termasuk ke dalam besaran turunan, yaitu diturunkan dari besaran panjang, kuat arus listrik, suhu, dan waktu. Selain itu, hambatan jenis juga merupakan besaran skalar, sehingga untuk menyatakannya cukup dengan nilai/angka saja, tidak mempunyai arah. Rumus Hambatan Jenis Resistivitas Rumus hambatan jenis resistivitas ada beberapa macam berdasarkan hubungannya dengan besaran-besaran lain. Berikut ini penjabarannya 1. Rumus Hambatan Jenis dengan Medan Listrik Dirumuskan ρ = E/J Keterangan ρ = hambatan jenis/resistivitas m E = medan listrik N/C J = kerapatan arus A/m2 2. Rumus Hambatan Jenis dengan Hambatan R Hambatan berbanding lurus dengan hambatan jenis. Dirumuskan ρ = rumus mencari hambatan jenis kawat atau, R = ρ l/A rumus mencari hambatan kawat atau, A = ρ l/R rumus mencari luas penampang kawat atau, l = rumus mencari panjang kawat Keterangan R = hambatan/resistansi A = luas penampang penghantar m2 l = panjang penghantar m 3. Rumus Hambatan Jenis dengan Suhu Dirumuskan ρt = ρ0 [1 + αt - t0] Keterangan ρt = hambatan jenis pada suhu t m ρ0 = hambatan jenis pada suhu referensi misalnya 0 0C atau 20 0C m t0 = suhu referensi 0C α = koefisien suhu hambatan jenis /0C t = suhu 0C Faktor yang Mempengaruhi Hambatan Jenis Resistivitas Hambatan jenis resistivitas suatu penghantar dipengaruhi atau bergantung pada jenis bahan dan suhu. Berikut ini penjelasannya 1. Bahan Sebagaimana yang telah dijelaskan di atas, setiap bahan memiliki nilai hambatan jenis yang berbeda-beda. Bahan dengan nilai hambatan jenis kecil sangat mudah menghantarkan arus listrik, sedangkan bahan yang memiliki nilai hambatan jenis besar sangat sulit atau tidak dapat menghantarkan arus listrik. Namun, ada juga bahan dengan nilai hambatan jenis yang berada di antara kedua bahan tersebut, dengan kata lain kemampuannya menghantarkan arus tidak mudah, tetapi juga tidak sulit. Bahan-bahan di atas, selanjutnya dikelompokkan menjadi konduktor, semikonduktor, dan isolator. Berikut ini adalah tabel nilai hambatan jenis beberapa contoh bahan konduktor, semikonduktor, dan isolator Konduktor Hambatan Jenis/Resistivitas Perak 1,47 x 10-8 Tembaga 1,72 x 10-8 Emas 2,44 x 10-8 Aluminium 2,75 x 10-8 Tungsten 5,25 x 10-8 Besi 9,71 x 10-8 Baja 20 x 10-8 Timah 22 x 10-8 Air raksa 95 x 10-8 Manganin 44 x 10-8 Constantan 49 x 10-8 Semikonduktor Hambatan Jenis Karbon Grafit 3,5 x 10-5 Germanium 0,60 Silikon 2300 Isolator Hambatan Jenis Karet 108 - 1013 Kaca 1010 - 1014 Mika 1011 - 1015 Porselin 1012 - 1014 Ebonit 1013 - 1016 2. Suhu Hambatan jenis suatu penghantar juga bergantung pada suhu. Jika perubahan suhu tidak terlalu besar, hambatan jenis logam biasanya naik secara linear terhadap suhu. Hambatan jenis penghantar pada suhu t dapat ditentukan dengan rumus ρt = ρ0 [1 + αt - t0] Keterangan ρt = hambatan jenis pada suhu t m ρ0 = hambatan jenis pada suhu referensi misalnya 0 0C atau 20 0C m t0 = suhu referensi 0C α = koefisien suhu hambatan jenis /0C t = suhu 0C Berikut ini adalah tabel koefisien suhu pada hambatan jenis beberapa jenis bahan konduktor, semikonduktor, dan isolator Konduktor α /0C Perak 0,0038 Tembaga 0,00393 Besi 0,0050 Aluminium 0,0039 Tungsten 0,0045 Emas 0,0034 Timah 0,0043 Air raksa 0,00088 Manganin 0,00000 Constantan 0,00001 Semikonduktor α /0C Karbon Grafit -0,0005 Germanium -0,05 Silikon -0,07 Isolator α /0C Karet - Kaca - Mika - Porselin - Ebonit - Contoh Soal Hambatan Jenis Berikut ini adalah beberapa contoh soal tentang hambatan jenis Contoh Soal 1. Sebuah kawat penghantar sepanjang l dengan hambatan jenis ρ dan luas penamapang A dialiri arus listrik sehingga menghasilkan hambatan sebesar R. Apabila panjang kawat penghantar diperkecil menjadi 1/3l, sedangkan luas penampangnya diperbesar menjadi 2A, besar hambatan kawat penghantar tersebut menjadi? Jawab Diketahui l1 = l A1 = A R1 = R l2 = 1/3l A2 = 2A Ditanyakan R2....? Penyelesaian ρ1 = ρ2 = = = R2 = R2 = R . 1/3 . 1/2R2 = 1/6R Jadi, besar hambatan kawat tersebut menjadi 1/6R. Contoh Soal Jika hambatan kawat tembaga 9 , hambatan jenis tembaga 0,16 mm2/m dan panjang kawat tersebut 300 m, maka luas penampang kawat adalah? Jawab Diketahui R = 9 ρ = 0,16 mm2/m l = 300 m Ditanyakan A...? Penyelesaian A = ρ l/R = 0,16 300/9 = 5,33 mm2 Jadi, luas penampang kawat tersebut adalah 5,33 mm2. Kesimpulan Jadi, hambatan jenis resistivitas adalah hambatan resistansi suatu penghantar yang memiliki panjang satu satuan panjang dan luas satu satuan luas, dirumuskan ρ = Gimana adik-adik, udah paham kan materi hambatan jenis di atas? Jangan lupa lagi yah. Sekian dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga bermanfaat. Referensi D. Young, Hugh dan Roger A. Friedman. 2002. Fisika Universitas Terjemahan Jilid 1. Jakarta Erlangga. Pauliza, Osa. 2008. Fisika Kelompok Teknologi dan Kesehatan untuk SMK Kelas XII. Bandung Grafindo Media Pratama.
9 Medan Magnet Sebuah Kumparan. Pengaruh medan magnet yang dihasilkan oleh sebuah penghantar arus terhadap benda yang ada di sekitarnya sangat kecil. Hal ini disebabkan medan magnet yang dihasilkan sangat kecil atau lemah. Agar mendapatkan pengaruh medan yang kuat, penghantar itu harus digulung menjadi sebuah kumparan.
Energi dan daya listrik. Listrik merupakan sumber energi yang sangat diperlukan oleh manusia untuk kehidupan sehari-hari, terutama pada era modern ini. Dimana, banyak peralatan listrik yang selalu kita gunakan untuk memenuhi kebutuhan hidup, katakan saja lampu, televisi, mesin cuci, maupun kulkas. Dalam prakteknya, penggunaan energi listrik ini tidak bisa terlepas dari adanya daya listrik dari berbagai peralatan listrik yang kita gunakan. Misalnya, jika peralatan listrik digunakan bersamaan dan memiliki daya listrik yang besar, maka membutuhkan energi listrik yang besar pula. Nah, pada materi kali ini kita akan membahas mengenai hubungan antara energi dan daya listrik beserta cara perhitungannya. Kita simak yuk penjelasannya! Energi listrik Energi listrik merupakan energi yang disebabkan oleh aliran muatan listrk dalam suatu rangkaian listrik tertutup. Peralatan yang kita gunakan seperti hairdryer, solder, pemanggang roti dan bola lampu jika dialiri listrik akan mengubah energi listrik menjadi energi bentuk lain seperti energi panas atau cahaya pada lampu. Baca juga Sumber Arus Listrik, Dari Mana Saja? Pada setiap alat listrik mempunyai hambatan tersendiri dan arus yang melewatinya merupakan elektron yang bergerak lalu akan bertumbukan dengan atom pada hambatan kawat, maka hambatan kawat pada alat tersebut bisa menjadi panas. Energi listrik dapat dinyatakan dalam persamaan berikut ini E = Vlt Keterangan E= energi listrik joule V = poensi listrik volt I = kuat arus A_ t = waktu s Contoh soal Sebuah peralatan elektronik dipasang pada tegangan sebesar 15 volt dengan arus yang mengalir sebesar 0,45 A. Berapakah besar energi listrik yang dibutuhkan dalam jangka waktu 2 menit? Jawaban V = 15 V l = 0,45 A t = 2 menit = 120 detik E = V x l x t E = 15 x 0,45 x 120 = 810 joule Daya Listrik Daya dapat diartikan sebagai banyaknya energi yang dibutuhkan tiap satuan waktu. Energi yang diubah oleh peralatan listrik bila muatan q bergerak melintasi beda potensial sebesar V adalah qV. Daya P merupakan kecepatan perubahan energi atau energi persatuan waktu dan dapat dirumuskan sebagai berikut Keterangan P = daya listrik watt E = energi listrik joule t = waktu s hubungan antara joule dan kWh sebagai berikut 1 kWh = J = 3,6 . 106 J Contoh soal Sebuah ruangan memiliki lampu pijar dengan tegangan sebesar 48 volt dengan hambatan sebesar 4 Ohm. Maka berapakah daya listrik pada lampu pijar tersebut ? Jawaban V = 48 Volt R = 4 Ohm P = V2/R = 482/4 = 576 watt Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related TopicsDaya ListrikEnergi dan Daya ListrikIPA TerpaduKelas 9 You May Also Like
CaraMenghitung Hambatan Jenis Suatu Penghantar. Program Studi Pendidikan Fisika Jurusan Pendidikan Mipa Fakultas. Doc Laporan Praktikum Fisika Modul 3 Adinda Mulyani Academiaedu. Memahami Hambatan Listrik Hukum Ohm Dengan Analogi Perahu. Modul1 Hukumohmdanhambatanjenispdf Institut Teknologi Del.You are here Home / Lain-lain / Hambatan Kawat Penghantar – Halo sobat, bagaimana kabar kalian? Semoga tetap semangat dan sehat selalu. Dalam pembelajaran kali ini, rumushitung akan membahas tentang hambatan pada kawat penghantar. Definisi Kawat penghantar yang digunakan pada kawat listrik pasti memiliki hambatan, meskipun nilainya kecil. Hambatan suatu kawat penghantar dipengaruhi oleh panjang kawat, hambatan jenis kawat, dan luas penampang pada kawat. Secara matematisnya, bisa ditulis dalam bentuk rumus Keterangan R = hambatan kawat penghantar atau Ohml = panjang kawat penghantar meterA = luas penampang kawat penghantar m2ρ = hambatan jenis kawat penghantar m Contoh soal 1. Diketahui sebuah kawat penghantar yang mempunyai panjang 75 meter, luas penampangnya 1,5 mm2, dengan hambatan jenisnya 17 x 10-7 m. Hitung berapa hambatan pada kawat tersebut ! Penyelesaian Diketahui l = 75 meterA = 1,5 mm2 = 15 x 10-7 m2ρ = 17 x 10-7 m Dicari R =…..? Jawab R = ρ . l / AR = 17 x 10-7 . 75 / 15 x 10-7R = 17 . 75 / 15R = 17 . 5R = 85 Ohm Jadi, besar hambatan pada kawat penghantar sebesar 85 Ohm. 2. Diketahui sebuah kawat dengan panjang 250 meter dan luas penampang 1 mm2. Kawat tersebut memiliki hambatan listrik sebesar 50 . Hitung berapa hambatan jenis kawat tersebut ! Diketahui l = 250 meterA = 1 mm2 = 1 x 10-6 m2 = 100 x 10-8 m2R = 50 Dicari ρ =….? Jawab R = ρ . l / Aρ = R . A / lρ = 50 . 100 x 10-8 / 250ρ = 100 x 10-8 / 5ρ = 20 x 10-8ρ = 2 x 10-7 m Jadi, hambatan jenis kawat sebesar 2 x 10-7 m. Berdasarkan contoh di atas, terlihat bahwa jika kawat penghantar semakin panjang dan hambatan jenis semakin kecil, maka nilai hambatannya bertambah besar. Namun, jika luas penampang kawat penghantar semakin besar, maka hambatannya semakin kecil. Untuk nilai hambatan jenis pada kawat penghantar ρ, bisa dilihat pada tabel di bawah. Nama ZatHambatan Jenis mAir102Air suling103 – 105Alkohol5 x 104Aluminium2,9 x 108Asam sulfat2,5 x 102Bakelit105 – 1010Besi8,6 x 10-8Ebonit1013 – 1016Emas2,3 x 10-8Kaca1011 – 1014Karbon6 x 105Raksa9,58 x 10-7Karet108 – 1013Mangan4,3 x 10-7Mika1013Minyak tanah1014Parafin1014Perak1,6 10-8Porselin1012 – 1014Timbal2,1 x 10-7Tembaga1,7 x 10-14Wolfram5,6 x 10-8Konstanta5 x 10-7 Soal dan Pembahasan 1. Sebuah kawat dengan luas penampang 1 x 10-5 m2 yang mempunyai hambatan jenis kawat sebesar 5 x 10-5 m. Kawat itu dipakai untuk elemen pembakar listrik 1 kW dengan hambatan listrik 10 . Panjang kawat yang dibutuhkan sebesar …. Pembahasan Diketahui A = 1 x 10-5 m2ρ = 5 x 10-5 mR = 10 Dicari panjang kawat l =….? Jawab Jadi, panjang kawat tersebut adalah 2 meter. 2. Sebuah kawat penghantar memiliki luas penampang 4 x 10-4 m2 dan hambatan jenis 2 x 10-4. Kawat tersebut berarus listrik 5 Ampere dan bertegangan 10 volt. Hitung berapa hambatan pada kawat tersebut ! Penyelesaian Diketahui V = 10 volti = 5 AA = 4 x 10-4 m2ρ = 2 x 10-4 m Dicari panjang kawat l =….? Jawab Jadi, panjang kawat teersebut adalah 4 meter. Demikian pembahasan ini kita akhiri sampai disini. Semoga bermanfaat dan sekian terima kasih. Reader InteractionsKesetaraanpanas-energimekanik pertama diukur oleh Joule dengan mengambil energi mekanik benda jatuh untuk mengaduk air dalam kalorimeter sehingga air menjadi panas. Energi listrik dapat diubah menjadipanas dengan cara mengalirkan arus listrik pada suatu kawat tahanan yang tercelup dalam air yang berada dalam kalorimeter.Resistansi atau hambatan listrik merupakan salah satu komponen penting dalam sebuah rangkaian elektronika. Untuk itu, kita akan bahas tuntas terkait dengan resistansi mulai dari pengertian, jenis, rumus, nila, persamaan, hingga simbol dari resistansi. Pastikan Anda memahami materi kali ini dengan membaca sampai tuntas. Resistansi adalah hambatan listrik atau indikator yang merupakan gaya melawan aliran arus. Itulah sedikit definisi mengenai resistansi yang paling umum. Untuk pembahasan selengkapnya, mari kita simak mulai dari jenis-jenis resistansi, rumus, hingga nilai-nilai resistansi berikut ini. Jenis – jenis Resistansi Jenis – jenis Resistansi Secara sederhana, komponen yang satu ini bekerja ketika elektron berbeda dengan dua terminal. Maka, listrik akan mulai mengalir ke tempat yang posisinya lebih rendah. Intinya, jika hambatan besar, maka arus akan menjadi semakin kecil. Begitu juga sebaliknya saat hambatan nilainya lebih kecil, maka arus akan semakin besar. Ada 3 jenis resistansi, diantaranya adalah Resistansi Penghantar. Resistansi Sambungan. Resistansi Suhu. Adapun penjelasan lebih detail dari masing-masing jenis hambatan listrik diatas dapat Anda simak dibawah ini. 1. Resistansi Penghantar Terdapat 3 jenis resistansi berdasarkan penghantarnya, diantara lain yaitu – Konduktor Konduktor adalah benda yang bersifat sebagai penghantar listrik yang baik karena mempunyai resisitivitas yang rendah. contohnya adalah tembaga, emas, besi, perak dll. – Isolator Isolator adalah benda yang memiliki sifat tidak dapat mengantarkan listrik dikarenakan memiliki nila risistivitas yang tinggi. Contohnya yakni plastik, karet, kertas, dan kaca. – Semikonduktor Semikonduktor adalah benda yang memiliki kedua sifat dari konduktor dan isolator. Contohnya yaitu silikon dan germanium. 2. Resistansi Sambungan Resistansi Sambungan adalah hambatan yang terjadi karena penyambungan antar komponen dalam sebuah rangkaian. Contohnya seperti sambungan antara kabel dan terminal baterai yang longgar sehingga menyebabkan panas pada suatu rangkaian. 3. Resistansi Suhu Resistansi suhu adalah hambatan listrik yang dapat dipengaruhi oleh naik turunnya suhu. Jadi, apabila suhu naik maka nilai hambatan juga ikut naik. Contoh dari jenis resistansi ini adalah pada saat kita mengecas HP, semakin bertambahnya baterai maka akan terjadi penurunan kecepatan dalam pengisian akibat terjadinya overheat pada suhu HP tersebut. Rumus Resistansi Rumus Resistansi Rumus resistansi sama dengan tegangan atau arus yang masuk. Sering juga disebut dengan istilah Hukum Ohm. Maksudnya yakni tegangan bertahan konstan maka arus penyebut meningkat dan menyebabkan nilai resistansi berkurang. Sedangkan saat arus turun maka dampaknya yakni nilai resistansi akan meningkat. Sederhananya yakni saat nilai hambatan listrik rendah maka arusnya akan semakin besar. Dan ketika hambatan listrik tinggi maka arus akan menjadi lebih kecil. Dasarnya yakni resistansi listrik mengaliri jenis dan suhu zat. Alat untuk mengukur resistansi atau hambatan listrik bernama multimeter digital. Arus, tegangan, parameter, dan sejenisnya merupakan objek yang bisa diukur. Ada beberapa macam cara menggunakan multimeter digital. Berikut ini tahapan yang bisa Anda coba praktikkan. Nyalakan instrumen lalu atur menjadi mode resistansi . Nilai resistansi target pengukuran dengan rentang secukupnya. Steker kabel tes merah pilih terminal . Sedangkan untuk steker kabel tes hitam untuk terminal COM. Kedua ujung resistor digunakan untuk menempatkan kabel uji dalam kotak. Layar LCD instrumen akan mulai menampilkan hasil pengukuran. Kabel uji resistor harus dilepas saat selesai mengukur. Alat tersebut tidak hanya digunakan untuk proses ukur, namun juga bisa mengoreksi suhu meter resistansi. Nilai Resistansi Nilai resistansi ini sendiri umumnya menggunakan satuan Ohm/Omega . Terutama yang difungsikan untuk mengukur rangkaian listrik. Nilai-nilai tersebut terangkum dalam penghantar atau konduktor. Tujuannya yakni untuk menghambat arus listrik serta mengendalikan besaran hambatan listrik. Sebagai tambahan informasi, berikut ini beberapa contoh material dan kondisi yang direkomendasikan dijadikan sebagai media penghantar listrik Material tembaga, yakni karena nilai resistansinya terbilang lebih rendah. Suhu, yakni nilai resistansi meningkat untuk membuat suhu meningkat. Panjang penghantar ini nantinya bisa digunakan untuk mengetahui nilai resistansi yang semakin tinggi. Luas penampang, yakni saat diameter semakin kecil maka nilai resistansi semakin tinggi. Untuk komponen yang difungsikan sebagai penghambat arus listrik sendiri disebut sebagai resistor. Dimana fungsi utama dari komponen ini yakni untuk melakukan proses pengurangan atau hambatan arus listrik dengan tujuan menurunkan level tegangan listrik. Sedangkan satuan resistansi yang digunakan yaitu Kilo Ohm, Mega Ohm, dan Giga Ohm. Satuan ini tentu menggunakan prefix atau SI standar internasional. Hitungannya adalah sebagai berikut Satuan Ohm 1 Giga Ohm Ohm 109 Ohm 1 Mega Ohm Ohm 106 Ohm 1 Kilo Ohm Ohm 103 Ohm Persamaan Resistansi Persamaan Resistansi Sebenarnya teori mengenai persamaan resistansi sudah ditemukan oleh George Simon Ohm sejak tahun 1825. Resistansi atau hambatan listrik dengan tegangan/voltage dan arus listrik/current nantinya dapat dijabarkan dengan Hukum Ohm. Berikut adalah rumus mencari persamaan resistensi menggunakan Hukum Ohm V = I x R atau R = V/I atau I = V/R Keterangan V voltage dalam satuan volt adalah tegangan listrik I current dalam satuan ampere adalah arus listrik R resistance dalam satuan Ohm adalah hambatan listrik Artinya, 1 ampere arus listrik mengalir sebuah komponen dengan tegangan 1 volt – resistansinya adalah 1 Ohm. Analogi yang lainnya yaitu rangkaian diberikan tegangan 24 volte dengan arus listrik 0,5 A. Hasilnya, 48 Ohm. Anda bisa menghitungnya menggunakan rumus persamaan resistansi di atas. Simbol Resistansi Simbol Resistansi Untuk simbol resistansi adalah huruf R resistance atau komponen resistor. Nah, simbol ini menentukan rumus masing-masing nilai, rumus dan persamaan resistansi. Berikut ini beberapa jenis symbol resistensi beserta rumus penghitungannya 1. Resistansi dalam hukum Ohm Resistansi dalam hukum Ohm yakni tingkat kuat arus yang masuk ke dalam dua titik akan berbanding lurus secara potensial. Kondisi ini digambarkan dalam rumus berikut I = V/R 2. Resistansi dalam konduktansi Resistansi dan hambatan arus listrik akan berbanding terbalik dengan hantaran atau konduktansi yang ada. Dimana besaran nilainya akan menghambat kuat arus listrik yang masuk. Sedangkan pengertian dasar mengenai kondutansi yakni besaran nilai yang mampu dijadikan sebagai penghantar arus listrik. Lalu untuk satuan konduktansi dalam S Siemens atau dengan simbol G. Jika dituliskan ke dalam rumus konduktansi adalah seperti berikut R = V/I atau G = I/V menjadi G = 1/R 3. Resistansi dalam kawat Menurut fisikawan Claude Pouillet dari Prancis mengenai resistansi dalam kawat. Nilai hambatan listrik yang masuk ternyata juga bisa ditentukan. Terutama oleh jenis kawat P, panjang kawat l dan luas penampang kawat A. Artinya, hambatan listrik ini akan berbanding lurus dengan panjang kawat yang tersedia. Sedangkan, hambatan akan berbanding terbalik dengan luas penampang kawat. Anda bisa menghitungnya menggunakan rumus hambatan kawat sebagai berikut R = P l/AKeterangan P m = Hambatan jenis kawat l m = Panjang kawat A m2 = Luas penampang kawat Kesimpulan dari rumus di atas yakni jika kawat yang digunakan lebih panjang diameternya maka tingkat hambatan listriknya juga akan lebih besar. Bisa diartikan kawat dengan luas penampang yang lebih besar maka akan membuat hambatan arus listriknya mengecil. 4. Resistansi konduktor Resistansi konduktor adalah ketika hambatan semakin besar, maka konduktor semakin panjang. Resistansi ini tergantung panjang, jenis, dan luas penampang. Sedangkan, luas penampang meningkat, maka resistansi berkurang atau bisa saja sirkulasi arus meningkat. Anda bisa menghitung masalah hambatan listrik menggunakan rumus persamaan resistansi tersebut. Resistansi dan Resistivitas Resistansi dan Resistivitas Resistansi dan resistivitas memiliki sedikit perbedaan. Karena resistivitas adalah hambatan konduktor dalam satuan panjang dan satuan penampang. Resistivitas juga bisa saja berbeda. Hal ini karena panjang dan ketebalan konduktornya sama. Adapun perbedaan antara resistansi dan resistivitas sebagai adalah sebagai berikut Resistansi Resistivitas Resistansi merupakan ukuran kapasitas material. Sifatnya, menahan elektron mengalir. Resistivitas merupakan ukuran material di bawah dimensi. Simbol resistansi huruf R. Simbol resistivitas huruf Yunani ƿ rho. Resistansi dengan satuan Ohm SI. Resistivitas dengan satuan ohm-meter. Pengaruh resistansi yaitu panjang, suhu material dan luas. Pengaruh resistivitas yaitu naik/turunnya suhu. Perbedaan antara resistansi dan resistivitas juga akan berbeda saat menerapkannya pada alat elektronik. Misalnya seperti resistansi hanya diterapkan pada alat pemanas. Kesimpulan Demikian pembahasan mengenai resistansi lengkap dengan rumus dan nilai-nilainya. Kesimpulannya, Anda bisa menghitung besaran hambatan listrik pada elektronik menggunakan rumus tersebut, ya? Semoga pembahasan di atas sudah cukup membantu Anda dalam memahami apa itu resistensi dan cara kerjanya.
Jadi daya listrik mesin cuci, TV, dan AC berturut-turut adalah 120 W, 50 W, dan 400 W. Jawaban: A. Contoh 2 - Soal Penggunaan Rumus Energi dan Daya Listrik. Pada sebuah alat listrik ini tertulis 50 Hz - 240 V, 90 W. Jika pada saat digunakan terjadi penurunan tegangan listrik menjadi 200 V, maka daya listrik yang digunakan alat tersebut
Rumus hambatan kawat penghantar arus listrik menyatakan hubungan antara empat komponen. Keempat komponen tersebut adalah besar hambatan R itu sendiri, luas penampang kawat A, panjang kawat ℓ, dan hambatan jenis ρ dari kawat penghantar arus listrik yang digunakan. Luas penampang menunjuk seberapa besar luas permukaan bidang kawat, sedangkan panjang kawat menunjuk ukuran panjang dari kawat yang digunakan. Hambatan jenis adalah besar hambatan dari sebuah kawat penghantar yang panjangnya satu meter dan luas penampangnya satu meter persegi. Arus listrik yang mengalir dari sumber tegangan menuju saklar lampu melalui kawat penghantar yang terbuat dari berbagai bahan konduktor seperti aluminium, emas, tembaga, dan lain sebagainya. Arus listrik mengalir melalui kawat yang besarnya dapat dipengaruhi oleh jenis kawat yang digunakan. Kondisi ini disebabkan setiap kawat memiliki hambatan jenis bergantung dari bahan yang digunakan. Hambatan jenis menunjuk karakteristik bahan dari kawat penghantar kawat arus listrik yang digunakan. Suatu kawat yang terbuat dari bahan yang sama memiliki hambatan jenis yang sama. Baca Juga Hukum Ohm dan Rumus Kuat Arus Listrik Bagaiaman pengaruh panjang kawat, luas penampang kawat, dan hambatan jenis kawat penghantar arus listrik terhadap besar hambatan? Bagaimana bentuk rumus hambatan kawat penghantar? Sobat idschool dapat mencari tahu jawabannya melalui ulasan fakor yang mempengaruhi dan rumus hambatan kawat penghanatar di bawah. Table of Contents Faktor-Faktor yang Mempengaruhi Besar Hambatan Kawat 1. Panjang Kawat ℓ 2. Luas Penampang A 3. Hambatan Jenis Kawat Penghantar ρ Rumus Hambatan Kawat Penghantar Contoh Soal Penggunaan Rumus Hambatan Kawat Penghantar dan Pembahasan Contoh 1 – Soal Faktor yang Mempengaruhi Besar Hambatan Kawat Penghantar Contoh 2 – Soal Mengenali Faktor-Faktor yang Mempengaruhi Besar Hambatan Kawat Penghantar Contoh 3 – Soal Penggunaan Rumus Hambatan Kawat Penghantar Arus Listrik Faktor-Faktor yang Mempengaruhi Besar Hambatan Kawat Sebelumnya sudah disinggung bahwa terdapat tiga faktor atau komponen yang mempengaruhi besar hambatan dari suatu kawat penghantar arus listrik yaitu panjang kawat, luas penampang kawat, dan hambatan jenis. Panjang kawat dan hambatan jenis kawat penghantar memiliki hubungan senilai atau sebanding dengan besar hambatan. Sedangkan luas penampang kawat memiliki hubungan berbanding terbalik dengan besar hambatan kawat penghantar arus listrik. Pengaruh tiga faktor yang mempengaruhi besar hambatan listrik kawat penghantar arus listrik tersebut akan dijelaskan lebih lanjut pada pembahasan di bawah. 1. Panjang Kawat ℓ Antara panjang kawat dan besar nilai hambatan kawat memiliki hubungan senilai atau sebanding. Artinya, semakin panjang kawat penghantar maka semakin besar hambatan yang akan dihasilkan. Sebaliknya, semakin pendek kawat penghantar yang digunakan akan membuat besar hambatan yang dihasilkan semakin kecil. Besar hambatan memiliki hubungan berbanding terbalik dengan arus listrik. Semakin besar hambatan yang terdapat pada kawat penghantar akan membuat arus listrik semakin kecil. Besar arus listrik dapat mempengaruhi nyala lampu dalam sebuah rangkaian listrik sederhana. Ukuran kawat penghantar yang semakin panjang akan membuat nyala lampu semakin redup. Sebaliknya, ukuran kawat penghantar yang semakin pendek akan membuat nyala lampu semakin terang. 2. Luas Penampang A Hubungan antara luas penampang dan besar hambatan kawat penghantar arus listrik adalah berbanding terbalik. Semakin luas kawat penghantar yang digunakan akan membuat besar hambatan kawat semakin kecil. Sebaliknya, semakin kecil luas kawat penghantar yang digunakan akan membuat nilai hambatan kawat semakin besar. Dalam sebuah rangkaian sederhana, besar hambatan akan mempengaruhi besar arus listrik yang akan mempengaruhi nyala lampu. Semakin kecil luas penampang kawat akan membuat nyala lampu semakin redup, dan semakin besar luas penampang kawat akan membuat nyala lampu semakin terang. Baca Juga Cara Menghitung Biaya Pemakaian Listrik +Contoh Soal dan Pembahasan 3. Hambatan Jenis Kawat Penghantar ρ Antaran besar nilai hambatan jenis ρ kawat penghantar dan besar hambatan R kawat penghantar memiliki hubungan sebanding. Artinya, semakin kecil hambatan jenis akan membuat nilai hambatan semakin kecil pula. Begitupun kondisi sebaliknya, semakin besar hambatan jenis akan membuat nilai hambatan dari suatu kawat penghantar semakin besar. Hambatan kawat berpengaruh terhadap besar arus listrik yang mengalir dalam sebuah rangkaian dengan hubungan terbalik. Sehingga, semakin besar hambatan jenis akan membuat arus litrik yang mengalir pada kawat penghantar semakin kecil yang mengakibatkan nyala lampu menjadi lebih redup. Semakin kecil nilai hambatan jenis akan membuat arus litrik yang mengalir pada kawat penghantar semakin besar yang mengakibatkan nyala lampu menjadi lebih terang. Kawat penghantat arus listrik yang biasa digunakan pada kabel umumnya terbuat dari tembaga. Sebenarnya, perak mampu menghantarkan listrik lebih baik dari tembaga karena nilai hambatan jenis perak 1,59 × 10–8 lebih kecil dari nilai hambatan jenis tembaga 1,68 × 10–8. Hambatan jenis yang lebih kecil akan membuat besar nilai hambatan menjadi lebih kecil, sehingga arus listrik yang dihantarken menjadi lebih besar. Namun, perak tidak efektif dijadikan sebagai kawat penghantar arus listrik jika dilihat dari sisi ekonomi. Nilai hambatan jenis beberapa kawat penghantar dapat dilihat pada tabel berikut. Semakin tinggi nilai hambatan jenis suatu kawat penghantar akan menyebabkan hambatan kawat menjadi semakin besar. Nilai hambatan kawat yang besar akan menyebabkan nilai arus listrik yang mengalir semakin kecil. Pemilihan jenis kawat penghantar arus listrik yang tepat akan membuat hasil yang lebih baik tentunya. Baca Juga Hukum Kirchoff 1 dan 2 Besar nilai hambatan suatu kawat penghantar dapat dihitung melalui rumus yang menyatakan hubungan antara hambatan, hamabatan jenis, panjang kawat, dan luas penampang kawat penghantar arus listrik yang digunakan. Rumus hambatan kawat penghantar diberikan seperti persamaan di bawah. Sebagai contoh, perhatikan soal sederhana penggunaan rumus hambatan kawat penghantar untuk permasalahan berikut. Soal Sebuah kawat terbuat dari bahan tembaga hambatan jenis tembaga = 1,68 × 10–8 = 0,0000000168 m memiliki luas penampang 0,0000000006 m2 dan panjangnya sama dengan 10 cm. Berapakah besar hambatan yang terdapat pada kawat penghantar arus listrik tersebut? Berdasarkan keterangan pada soal dapat diperoleh informasi seperti berikut Hambatan jenis kawat yang digunakan ρ = 0,0000000168 mLuas penampang kawat A = 0,0000000006 m2 Panjang kawat ℓ = 10 cm = 0,1 m Menghitung besar hambatan yang terdapat pada kawat penghantar Baca Juga Macam-Macam Alat Ukur Listrik Contoh Soal Penggunaan Rumus Hambatan Kawat Penghantar dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman penggunaan rumus hambatan kawat penghantar. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan cara menggunakan rumus hambatan kawat penghantar. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Faktor yang Mempengaruhi Besar Hambatan Kawat Penghantar Diketahui sebuah kawat dengan luas penampang 0, m2 dan memiliki hambatan jenis sebesar 0, m. Kawat tersebut digunakan sebagai elemen pembakar listrik 1 kW dengan hambatan listrik 5 . Panjang kawat yang diperlukan adalah ….A. 10 mB. 15 mC. 25 mD. 30 m Pembahasan Berdasarkan keterangan pada soal dapat diperoleh informasi bahwa Hambatan jenis ρ = 0,000001 mLuas penampang A = 0,000005 m2Hambatan listrik elemen R = 5 Menghitung panjang kawat yang dibutuhkan ℓ dari persamaan rumus hambatan kawat penghantar yang diketahui. Jadi, panjang kawat yang diperlukan adalah 25 m Jawaban C Baca Juga Rumus Tekanan Hidorstatis dan Tekanan pada Benda Padat Contoh 2 – Soal Mengenali Faktor-Faktor yang Mempengaruhi Besar Hambatan Kawat Penghantar Pernyataan tentang hambatan listrik kawat penghantar di bawah ini adalah benar, kecuali ….A. semakin panjang kawat penghantar, semakin besar hambatan listriknyaB. hambatan listrik kawat penghantar sebanding dengan luas penampangnyaC. semakin besar luas penampang kawat penghantar, semakin kecil hambatannyaD. hambatan kawat penghantar bergantung pada jenis, panjang, dan luas penampangnya Pembahasan Berdasarkan rumus hambatan kawat penghantar arus listrik, besarnya hambatan dipengaruhi oleh tiga komponen yaitu hambatan jenis kawat, panjang, dan luas kawat penghantar arus listrik yang digunakan. Hubungagn ketiga komponen tersebut dengan besar hambatan adalah sebagai berikut. Hambatan jenis – hambatan sebandingPanjang kawat – hambatan sebandingLuas penampang kawat – hambatan berbanding terbalik Jadi, pernyataan tentang hambatan listrik kawat penghantar yang tidak tepat adalah hambatan listrik kawat penghantar sebanding dengan luas penampangnya. Jawaban B Contoh 3 – Soal Penggunaan Rumus Hambatan Kawat Penghantar Arus Listrik Pembahasan Rumus hambatan kawat penghantar dapat digunakan dapat digunakan untuk menentukan perbandingan hambatan pada dua kawat penghantar. Di mana besar perbandingan hambatan jenis kedua kawat untuk ukuran panjang dan luas kawatnya sama sama dengan besar hambatan. Sehingga, dapat diperoleh persamaan berikut. R2 R4 = ρ2 ρ4 = 0,06 0,24= 6 24 = 1 4 Jadi, perbandingan hambatan kawat penghantar 2 dan 4 adalah R2 R4 = ρ2 ρ4 = 1 4. Jawaban D Sekian pembahasan mengenai rumus hambatan kawat penghantar arus listrik dalam sebuah rangkaian. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Rumus Energi dan Daya ListrikPertama atur potensiometer pada posisi hambatan terbesar, voltmeter dan amperemeter akan menunjukkan nilai tertentu yang relatif kecil. Selanjutnya, putar potensiometer perlahan-lahan, perhatikan apa yang terjadi pada voltmeter dan amperemeter.4.
- Tahukah kamu dari mana asal listrik di rumahmu? Rumahmu mendapatkan listrik yang dialirkan dari pembangkit listrik. Namun bukankah pembangkit listrik berada jauh dari rumah, lantai bagaimana bisa listrik mengalir sangat jauh? Listrik dapat mengalir sangat jauh jika dibantu oleh suatu listrik pada dasarnya adalah aliran elektron. Jika ada potensial positif daerah dengan banyal elektron da nada potensial negatif daerah dengan sedikit elektron, elektron akan mengalir ke daerah negatif dan terjadilah arus berdasarkan konduktivitas listriknya dibedakan menjadi isolator, konduktor, dan semikonduktor. Konduktivitas adalah sifat yang memungkinkan suatu bahan untuk menghantarkan listrik. Baca juga Musim Hujan, Lindungi Kendaraan dengan Cairan Isolator NURUL UTAMI Pita energi bahan konduktor, semikonduktor, dan isolator Isolator Dilansir dari Encyclopaedia Britannica, isolator adalah bahan yang menghalangi arus listrik sehingga tidak bisa menghantarkan listrik. Terlihat pada gambar bahwa bahan isolator memiliki bandgap atau jurang pembatas dimana elektron tidak cukup kuat untuk melompatinya sehingga aliran listrik terhenti.
Arusyang mengalir pada loop 2 adalah 0,03 A sesuai dengan arah yang dilukiskan pada Gbr. 3.22. 133 3.15 Daya Listrik Jika arus listrik mengalir pada sebuah hambatan maka hambatan tersebut akan menjadi panas. Ini menunjukkan bahwa pada hambatan tersebut terjadi proses perubahan energi dari energi listrik menjadi energi panas.
Di zaman yang serba maju, listrik merupakan sesuatu yang sangat dibutuhkan oleh manusia dalam menjalani kegiatan sehari-hari. Baik sedang bekerja, belajar maupun sedang melakukan aktivitas reguler yang biasa dilakukan di rumah saja. Saat bekerja kita membutuhkan listrik untuk mengoperasikan alat-alat yang kita butuhkan seperti laptop, mesin cetak, dan lampu sebagai penerang ruangan. Ketika belajar pun kita membutuhkan listrik untuk bisa mengoperasikan ponsel dan membuka aplikasi Pahamify dan menikmati fitur-fitur menarik di dalamnya. Tanpa listrik, sinyal yang dibutuhkan oleh ponsel akan terganggu sehingga tidak dapat bekerja maksimal. Jika kita telusuri dengan baik, listrik yang ada di rumah kita itu tidak begitu saja muncul dan membuat beberapa benda menjadi bisa bekerja. Mulai dari stop kontak yang ada di dalam rumah, menyambung ke kabel listrik yang ada di luar, dan berakhir di situs pembangkit listrik yang ada di sekitar daerah kamu. Pembangkit listrik dibuat untuk menghasilkan aliran listrik yang pada akhirnya bisa kamu rasakan manfaatnya. Sebagian besar pembangkit listrik yang ada di dunia memanfaatkan magnet untuk menghasilkan listrik melalui fenomena yang bernama induksi elektromagnetik. Di pembahasan mengenai medan magnet, kita bisa ketahui bahwa aliran listrik dapat menghasilkan medan magnet. Seorang ilmuwan asal London, Inggris bernama Michael Faraday pernah melakukan percobaan untuk membuktikan kebalikan dari pernyataan tersebut. Dia ingin mencari tahu apakah medan magnet bisa menghasilkan aliran listrik. Percobaan yang Michael Faraday lakukan adalah dengan melilitkan dua buah kawat di sisi yang berseberangan dari sebuah besi berbentuk torus, atau lingkaran yang berlubang seperti donat. Salah satu ujung dari lilitan kawat dihubungkan ke baterai. Sedangkan kawat yang lainnya dihubungkan ke galvanometer, alat yang bisa mendeteksi arus listrik dan arah alirannya. Illustrasi rangkaian yang dibentuk dalam percobaan Faraday Kawat yang dihubungkan ke baterai jadi sumber medan magnet, karena aliran listrik yang dihasilkan oleh baterai akan menghasilkan medan magnet di sekelilingnya. Kunci percobaan yang dilakukan oleh Michael Faraday terletak di kawat sebelahnya. Jika medan magnet bisa menghasilkan arus listrik, jarum di galvanometer akan bergerak menyimpang dari angka nol yang menandakan adanya arus yang mengalir di kawat Setelah arus listrik dinyalakan di kawat pertama, Michael Faraday mulai mengamati kawat yang kedua. Percobaan awal memang tidak menghasilkan arus listrik, tapi ketika dia teliti kembali ternyata ada saat dimana jarum galvanometer tersebut bergerak dan menyimpang. Hal tersebut terjadi ketika baterai baru dihubungkan ke kawat dan juga ketika baterai baru dilepaskan dari kawat. Akan tetapi, galvanometer menunjuk kembali ke angka nol ketika baterai terhubung. Kunci dari percobaan yang dilakukan ini adalah perubahan dari keadaan baterai. Dari yang awalnya tak terhubung menjadi terhubung atau sebaliknya. Arus di galvanometer akan muncul ketika baterai baru dipasang atau baru dilepas saja. Ini menandakan bahwa arus di galvanometer baru muncul ketika arus listrik di kawat salah satunya berubah. Dari tidak ada arus menjadi tidak ada arus atau sebaliknya. Besar arus listrik di kawat yang digunakan pada percobaan ini sebanding dengan besar medan magnet yang dihasilkan. Artinya, jika arus berubah maka medan magnet juga berubah. Tak hanya medan magnet yang membuat arus listrik muncul di galvanometer, tapi adanya perubahan medan magnet tersebut juga memberi dampak atas munculnya arus listrik tersebut. Medan magnet harus terus berubah jika ingin terus menghasilkan arus listrik. Ini lah hasil temuan Michael Faraday pada tahun 1831 yang kemudian pada hari ini kita pahami sebagai Hukum Faraday. Dimana perubahan medan magnet menyebabkan adanya gaya gerak listrik atau GGL yang membuat elektron pada kawat bergerak dan menghasilkan arus listrik. Gaya gerak listrik ini tak hanya dipengaruhi oleh perubahan besar medan magnetnya saha. GGL juga dapat dihasilkan melalui perubahan luas loop kawat serta perubahan sudut antara medan magnet dan loop meskipun besar medannya dibuat konstan. Hukum Faraday digunakan pembangkit listrik yang menggunakan induksi elektromagnetik yang sempat disebut di awal tulisan ini. Generator di dalam pembangkit listrik memutarkan lilitan kawat sehingga dapat mengelilingi magnet. Lalu hasilnya adalah munculnya arus listrik di lilitan tersebut. Gerakan memutar ini berasal dari sumber yang berbagai macam dan yang membedakan satu jenis pembangkit dengan pembangkit lainnya. Sumber yang biasa digunakan adalah uap air yang dihasilkan dari penguapan air, pembakaran batu bara, panas bumi atau panas yang dihasilkan reaksi nuklir. Uap air tersebut akan dialirkan ke generator untuk menghasilkan gerakan generatornya. Gerakan generatornya pun dapat dihasilkan secara langsung. Seperti menggunakan gerakan kincir yang ditiup angin atau menggunakan gerakan air yang melewati bendungan. Apapun yang digunakan untuk menggerakan generatornya, listrik itu dihasilkan melalui lilitan kawat yang bergerak mengelilingi magnet atau biasa disebut dengan Induksi Elektromagnetik. Bukan hanya Hukum Faraday yang harus kamu pelajari dalam bahasan Induksi Elektromagnetik. Terdapat salah satu hukum yang perlu kamu pelajari juga yaitu Hukum Lenz. Selain itu kamu juga akan bertemu istilah bernama “fluks” dalam pembahasan materi ini. Semua itu dapat kamu pelajari lebih lengkap di Aplikasi Pahamify. Melalui aplikasi Pahamify kamu akan mendapatkan pengalaman belajar yang belum kamu rasakan sebelumnya. Animasi dan cara penyampaian yang memberi pemahaman dari akarnya akan membuat kamu lebih mudah dalam memahami sebuah materi pelajaran. Maka download dan berlangganan Pahamify agar kamu dapat merasakan segala fitur menawan yang ada di aplikasi Pahamify. Pahami Artikel LainnyaNah hambatan tidak konstan, kurang lebih seperti itu. Rumusnya kayak gini: Ya, hambatan itu ada kaitannya dengan suhu. Seperti yang tadi kita bahas, suhu laptop yang panas, seringkali membuat dia nge-hang dan tidak bekerja. Itu artinya, hambatan si laptop bertambah karena pengaruh panas. Nah, itu tadi pembahasan kita tentang hambatan listrik.Energilistrik dipindahkan dalam bentuk aliran muatan listrik melalui kawat logam konduktor yang disebut arus listrik. Energi listrik dapat diubah menjadi bentuk energi yang lain seperti energi gerak, energi cahaya, energi panas, atau energi bunyi. Energi listrik sangat dekat dengan kehidupan manusia karena sangat dibutuhkan untuk mempermudah segala aktivitas kehidupan.
Jelaskancontoh perubahan energi listrik menjadi e KN. Kim N. 02 Oktober 2021 05:27. Pertanyaan. Jelaskan contoh perubahan energi listrik menjadi energi panas. 9. 1. Jawaban terverifikasi. MP. M. Puspasari. Mahasiswa/Alumni Universitas Pembangunan Nasional Veteran Jakarta. 25 Maret 2022 07:50.
P02 Jika pada rangkaian gambar 1b hambatan dalam dari voltmeter V diketahui from FIS 2016 at State University of Malang
Bahankonduktor padat merupakan suatu bahan yang sukar berubah bentuk dan memiliki sifat baik dalam menghantarkan listrik. Berikut ini contoh bahan konduktor yang berwujud padat. 1. Tembaga. Tembaga termasuk bahan konduktor yang memiliki tahanan rendah, daya hantar listrik 57 m/Ohm.mm2 pada suhu 20 oC dengan koefisien muai suhu 0,004 / oC.
Alatyang mengubah energi listrik menjadi energi gerak pada umumnya menggunakan motor listrik. Pada motor listrik, arus listrik mengalir melalui kumparan untuk menimbulkan medan magnet, sehingga as motor berputa. Putaran as motor inilah yang dimanfaatkan untuk menggerakan kipas angin, bor listrik, belender, mobil - mobilan, dan alat lain.
Dengankata lain, isolator merupakan penghambat aliran listrik dan penghambat panas. Dalam sebuah jurnal oleh Nurhening Yuniarti dan A.N. Afandi dari UNY dan UM disebutkan pula bahwa isolator dalam tenaga listrik adalah salah satu peralatan listrik yang fungsinya adalah untuk memisahkan dua buah penghantar atau lebih secara elektris.
KoefisienSuhu terhadap Resistansi (hambatan-tahanan-resistivitas) Dalam teknik listrik atau elektronik, ketika aliran arus supply melalui kawat maka akan panas karena resistansi atau hambatan kawat. Dalam kondisi sempurna, resistansi harus '0' namun itu tidak terjadi. Ketika kawat menjadi panas, maka resistansi kawat berubah sesuai dengan suhu.
May6th, 2018 - Dalam makalah ini akan di jelaskan bagaimana pemanfaatan energi panas dan listrik dalam setrika listrik 1 2 RUMUSAN MASALAH' 'Manfaat Setrika untuk Merapikan Pakaian BIMBINGAN May 4th, 2018 - Elemen pemanas menjadi sumber panas pada setrika listrik Bentuknya berupa kawat nikelin yang pipih dan 5 / 16